

BENEFITS OF LAB MOCK-UP TESTING

- Validate the structural integrity
- Measure the air tightness
- · Verify the water drainage characteristics
- Observe condensation behavior
- · Identify critical construction details
- Review sequencing/logistics
- · Establish standard of care
- · Verify code compliance
- Confirm compliance with contract requirements and project specifications

11

BENEFITS OF LAB MOCK-UP TESTING

Exterior Wall Performance Characteristics:

- · Resistance to air leakage
- Resistance to water penetration
- Structural performance
- Thermal cycling performance
- Condensation evaluations
- Building movement and seismic evaluations
- Durability
- Special Tests
 - Acoustic
 - Hurricane
 - Bomb Blast

Elements that should be included in the mock-up:

- Accurate representation of the wall design inclusive of typical details
- Specialty details and transitions
- Anchorage conditions
- · Longest spans
- Corner conditions
- System transitions

KEYS TO SUCCESS

15

KEYS TO SUCCESS

- Understand the project performance requirements relating to the exterior wall.
- Review the test methods required by the project specifications.
- Look for special testing requirements:
 - Seismic
 - Thermal
 - CRT
 - Bomb Blast
 - Missile Impact

- · Elements that should be included in the PMU
 - Accurate representation of the wall design inclusive of typical details.
 - Specialty details and transitions
 - Anchorage conditions
 - Support Conditions
 - Longest Spans
 - Corner Conditions
 - System Transitions

KEYS TO SUCCESS

17

17

KEYS TO SUCCESS

The formal test procedure is a critical document and should be prepared by the testing laboratory:

- Pre-testing
- Deflection criteria
- Design pressures
- Simulated building movement issues
- Pass/fail criteria
- Substrate testing

18

MOCK-UP CONSTRUCTION AND PMU INSTALLATION

- The placement of the test chamber steel representing the building structural frame is a critical first step.
- Every chamber is customized to accommodate project conditions.
- Verify the availability of special erection equipment at the test site.
- Maintain accurate as built drawings.
- Promptly notify test lab and owner of any changes to the schedule.

19

TESTING PLAN

Determine the required observers

Inform observers of the schedule for each test sequence

Advise all interested parties that schedules will be dynamic

 90% of all mock-ups require some form of remediation during the test phase

20

20

PRIOR TO TESTING

Publicize the proposed mock-up test schedule for all interested parties:

- Installation of the mock-up
- Visual inspection
- Sealant cure time
- Testing duration
- Remediation and retesting
- Report
- Dismantle

21

CAREFULLY ANALYZE THE TEST RESULTS

Cause of premature failures must be determined: Excessive Deflection, Glass flaws, anchor failures are often contributing factors

Analysis and understanding of test results, will require an investment of time

- Workmanship
- Design

Avoiding the temptation of "Band-Aid" remediation

Involve the design team:
Owner/Architect/General Contractor

22

FIELD TESTING VS. LABORATORY TESTING

1. Lab Testing

 Performed on prototype specimen to certify or validate product performance ratings

2. Quality Assurance Field Testing

 Performed on "newly" installed products to verify installed performance of the product and the installation

3. Forensic Testing

 Performed on wall assemblies with known water control problems as a means to accurately identify suspect wall construction components and details

24

REASONS TO PERFORM FIELD TESTS

1. Quality Control

- New construction
- Building façade renovations and improvements
- Replacement
- Remedial and maintenance verification

2. Investigative

- Water leakage analysis
- Seasoned buildings
- 3. Litigation

25

COMMON FIELD TESTS

- 1. Air infiltration or exfiltration testing
- 2. Water penetration testing
- 3. Structural performance testing
- 4. Specialty field tests:
- Acoustical
- Thermal evaluations
- Glass evaluations (bow/warp, frost point) • Dynamic water
- Masonry anchors (shear and tension tests)
- Masonry wall absorption
- Tracer smoke
- Vacuum dome
- Roof testing
- testing
- Blower door and thermal imaging

JOSE COLON

(a) (678) 463-6929

(b) jose.colon@intertek.com

(c) intertek.com/building