Physical and Mechanical Properties of Typical Soda Lime Float Glass

Glass is a brittle material. It will act elastically until it fractures at ultimate load. That ultimate load will vary, depending upon the type and duration of the loads applied and the distribution, orientation and severity of the inhomogeneities and micro-flaws that exist in the surface of the glass. Because of this nature, glass cannot be engineered in the same way as other building envelope materials that have a predictable, specific strength. In those cases, factors can be (and are) assigned to help assure that breakage does not occur at the selected design load.

Because the ultimate strength of glass does vary, its strength can best be described statistically. Architects and engineers who wish to specify a design factor for glass in buildings must choose the anticipated wind load, its duration and the probability of glass breakage (defined as x per 1000 lites of glass at the initial occurrence of the design load). The International Building Code (IBC) currently used in the United States references ASTM E1300, which commonly uses a conservative factor of 8 per 1000 for vertical glazing.

Glass manufacturers can provide the appropriate data for determining the expected performance of their products. However, it remains the responsibility of the design professional to review these performance criteria and determine if they are suitable for the intended application. The following is a summary of the average physical and mechanical properties of soda lime float glass produced in North America.

- **Modulus of Elasticity (E)** is the mathematical description of an object or substance’s tendency to be de-formed elastically (i.e., non-permanently) when a force is applied to it. The elastic modulus of an object is defined as the slope of its stress-strain curve in the elastic deformation region.

 Modulus of Elasticity for glass is \(~ 10.4 \times 10^6\) psi (71.7 GPa)

- **Modulus of Rigidity (Shear) (G)** is defined as the ratio of shear stress to the shear strain.

 \(~ 4.3 \times 10^6\) psi (29.6 GPa)

- **Poisson’s Ratio (ν)** is the ratio, when a sample object is stretched, of the contraction (perpendicular to the applied load), to the extension (in the direction of the applied load).

 \(~ 0.22\)

- **Coefficient of Linear Thermal Expansion (α)** defines the change in the length of an object with a change in temperature. Specifically, it measures the fractional change in volume per degree change in temperature at a constant pressure.

 \(~ 4.6 \times 10^{-6}\) strain per °F (8.3 \times 10^{-6}\) strain per °C)
• Density (ρ) of a material is defined as its mass per unit volume

\[\sim 156 \text{ lb/ft}^3 (2500 \text{ kg/m}^3) \]

• Modulus of Rupture (MOR) (Flexure)\(^a\) is defined as a material’s ability to resist deformation under load.

<table>
<thead>
<tr>
<th>Glass Type</th>
<th>(mean)</th>
<th>(design: 8 in 1000)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed Glass</td>
<td>6,000 psi (41 MPa)</td>
<td>2,800 psi (19 MPa)</td>
</tr>
<tr>
<td>Heath Strengthened Glass</td>
<td>12,000 psi (83 MPa)</td>
<td>5,600 psi (39 MPa)</td>
</tr>
<tr>
<td>Fully Tempered Glass</td>
<td>24,000 psi (166 MPa)</td>
<td>11,200 psi (77 MPa)</td>
</tr>
</tbody>
</table>

\(\text{note a} - \) These are approximate values for short load durations (under 1 minute) for undamaged glass in four-sided support.

\(\text{note b} - \) Probability of breakage - note that these values are for the surface of the glass (not the edge) and do not take into consideration area effects.

• Hardness characterizes the scratch resistance of various minerals through the ability of a harder material to scratch a softer material

Knoop’s Scale \(\sim 470 - 605 \text{ kg/mm}^2 \)

• Specific heat capacity (C) a measurable physical quantity that characterizes the amount of heat that is required to change an object’s temperature by a given amount.

\[\sim 0.20 - 0.21 \text{ Btu/(lb x °F)} \text{ or } \sim 0.84 - 0.88 \text{ J/(kg x K)} \]

• Thermal conductivity (k) is the rate at which heat flows through a material between points at different temperatures, measured in watts per meter per degree.

\[\sim 0.52 - 0.57 \text{ Btu/(hr x ft x °F)} \text{ or } \sim 0.9 - 1.0 \text{ W m}^{-1} \text{ K}^{-1} \]

• Mean Refractive Index describes the quantity that light is bent as it passes through a single substance at Sodium D Line: \(1.5\)

• Chemical Composition:

 - Silicon dioxide (SiO\textsubscript{2}) \(69 - 74\%\)
 - Calcium oxide (CaO) \(5 - 12\%\)
 - Sodium oxide (Na\textsubscript{2}O) \(12 - 16\%\)
 - Magnesium oxide (MgO) \(0 - 6\%\)
 - Aluminum oxide (Al\textsubscript{2}O\textsubscript{3}) \(0 - 3\%\)

• Softening point - \(1319 - 1345 \text{ °F} \text{ (715 - 729 °C)}\)

• Annealing point - \(1011 - 1018 \text{ °F} \text{ (544 - 548 °C)}\)

• Strain point - \(939 - 952 \text{ °F} \text{ (504 - 511 °C)}\)
- Hemispherical Emissivity at room temperature - ~ 0.84
- Reflection 4% from each surface
- Visible light absorption 1 - 2% for 1/8" (3 mm) glass
- Far infrared (~10 μm) transmission - 0
- Chemical Resistance - Excellent resistance to acids, other than HF. Poor resistance to alkalis.
- Electrical Resistivity - High

Design professionals should consult the NGA with GANA Glazing Manual and Guide to Architectural Glass for additional information on glass design and engineering, fabrication considerations, and application and glazing guidelines.

The National Glass Association (NGA) has produced this Glass Technical Paper solely to provide general information as to typical physical and mechanical properties of soda lime float glass produced in North America. The Paper does not purport to state that any one particular type of float glass is assured to exhibit the properties described herein or should be used in all applications or even in any specific application. The user of this Paper has the responsibility to consult with the float glass manufacturer(s) for specific product information. NGA disclaims any responsibility for any specific results related to the use of this Paper, for any errors or omissions contained in the Paper, and for any liability for loss or damage of any kind arising out of the use of this Paper.

Visit www.glass.org/store for a complete list of Glass Technical Papers, as well as other glass building products and glazing industry reference materials.

The Technical Services Division of the National Glass Association (NGA) has produced this Glass Technical Paper solely for informational purposes. NGA makes no representations or warranties, express or implied, with respect to the information provided in this Paper or to its use. This Paper makes no attempt to provide all information or considerations for the topic area covered within this Paper. NGA disclaims any responsibility for any specific results related to the use of this Paper, for any errors or omissions contained in the Paper, and for any liability for injury, loss or damage of any kind arising out of the use of this Paper. This Paper is a “living document,” and NGA reserves the right, in its sole discretion, to update, revise, and amend the Paper from time to time as it sees fit and to do so without notice to prior recipients or current users of this Paper.

This Paper was developed by dedicated member volunteers and subject matter experts. The original version of this document was approved and published in 2012. This version of the document was updated and published in July 2023.