

cĴĨĴĈŚ3ĨŚĽţ₩ ň½Ŷ

½¬Ë\ŵ - Ĉ½Ĩ 4 ¬Ë !!Ë ĜĴ ¬ň ĺ Ĉڽ¬Ê¬ Ë €ŚĽĴ¬ - L° ĹŚĖË, ŠĈĖŢ ËĴ ŚË ½₩¬ ˬň Ĵ ĖĨ ĈŶ

Conley Oster
Co-Founder
Raise Robotics

n Ś**∓**ň ½

Recent Tech Advancements in Robotics

Advancement Implications

What makes a good application?

Use-Case Development Roadmap

Applications of Advanced Robotics in Glazing

Traditional Robotics Don't Work On -Site

, \$\psi_1/2\bar{1}\bar{E} \rightarrow \frac{1}{27}\bar{S\text{E}\bar{E}} \bar{1} \bar{1}\frac{1}{27}\bar{E}\bar{E}\bar{E} \bar{1} \bar{1}\bar{1}\bar{E}\bar{E}\bar{E} \bar{E} \bar{E}

Perception

B½Ĩ½Ë¬ĆĽŚĖĖ;¬

<u>Planning</u>

<u>Action</u>

The tools for gathering data about the surrounding environment

See - Computer Vision Feel - Tactile Sensors ≈ŚĽŢ ¬ŢĊŴŚĖ ¼ĨĬŚĜŢĖÏĠŢĖ ĨţŚÏĠ¼Ĩ½ĤŢ ĒĠŚŢĬĊ!ŶË ĽŢ ↑ □ ▼ŚŢĒ˽ŢŇË ţţţ ↓ □ ţĨË ňŒĽĈڰ ½ŢĽĠĖĒŢĤŢŚË ŚŢŪď¶ŢĦŚŢĨŠË

≈ŚāĴαŜĖℍ⅓ϝĴ½Ë ⅓ÍŚţႼÃĴĈŧ₽ÃŚŪ Plan motion decisions based on the processed data.

Quantify uncertainty and make probabilistic assumptions. Execute planned commands while simultaneously streaming live sensory data.

Today's robots never stop improving

Machine Learning

Can 'train' machine simulation on real or synthetic (AI generated) vision & sensor data.

Improves speed, accuracy, and robustness of the machine algorithms.

Allows more accurate job estimations.

What makes a 'good' application?

$\approx \Delta \dot{\mathbf{E}}_{\mathbf{1}} \hat{\mathbf{Y}}$

- pĖHŽŚĖŲ ĜŚĆĖŚĖ ŠĖ ĖŠŴ ĖŠNĖ ŠĖ ŠŽĖ ŽŠĖ ŽIĖ

\approx $\hat{S} \circ \hat{S} \hat{I} \hat{J} \hat{I} \hat{I} \hat{I} \hat{S}$

● ŒŹ ŚË 1 ° ŢŚŢĖĶĒŒŹ ŚË ŪŚ ŚŢĒĶË

fĴ½¼ŶËĈÃŒ½¼

B ŚĖĖĨĖĆŚā Ĵ dĆŚĖIJĖū dĖĴ ¼ ¶ ĆË ŢŶĖdĽ½ ĖĖĖ ŚĽĨd ĦĶË

NATIONAL GLASS ASSOCIATION with GAN.

Engaging with a startup on a new use -case

- Choose a target scope of work and provide the business case
- Shadow workers and conduct interviews
- Segment SOW into smaller tasks
- First, develop robotic application for 'easiest' task in the scope
- Establish success metrics for PoC test
 DOES IT <u>COMPLETE</u> THE DESIRED TASK?
 Remove performance metrics from initial success metrics.
 If it can complete the task, it will be able to complete the task more efficiently.
- Continue development on more complex tasks until entire SOW is completed
- Establish KPIs for commercial use Cycle times, mitigated hazards, speed of setup, etc.
- Handoff to customer once established KPI's have been met

Applications of "Smart" Robotics in Glazing

Technology We're Using:

- Computer Vision
- Haptic Feedback
- Machine Learning
- Tool Changers

Established Capabilities:

- High-Accuracy Placement
- Material Handling
- Torque driving + drilling
- Layout Marking
- Quantifying deviation from plan

p**=**ËŒĴ ╣ ╣ ½ĈŶ

- ≈ Í Î Ĩ ĖËĽ½ŢËŢ Ŭ Ĭ ŚĈŹĨŚËŢËÑŶŢŹ ŒËŚŢŪŒ Ţ ŚŢĨĖËĨĖŒŢË pË
- \approx 1 1 1 EE/2 CS E CS 1/3 E CECET YIECS STA A SIH CEA J 1/2 H Y EVET 1/2 ET 1/2
- OH ½C 3Ĵ ∘ Ė˽C ŚË½L I OU Ś ┗YËĖŚŚ T ĖT ĖŶ Ū Ĵ ĆĖ ĖŚ3L ½Ė ŚĖŢ Ĵ I Ś Ū Ū M ŚH Ţ Ś Ë
 Ú J ĖċŢŚĖĖĖ ½ĖŚIĖŹŢM Ė Ū Ė I HU Δ Φ Ś Ū Ś Ū ∘ Ė Ū ĆĖ ĆŠŚĖ

Conley Oster

(678) 315-8606 conley@raiserobotics.ai

