

Thirsty 1851A

QUENCH YOUR THIRST FOR TECHNICAL KNOW-HOW

Thirsty LAY

TECHNICAL KNOW-HOW

Natural Outdoor Weathering Testing

Ron Roberts Q-Lab

NGA UPCOMING EVENTS

NGA Glass Conference: Ann Arbor Sept 29-Oct 2, 2025

> GlassBuild America Nov 4-6, 2025

Glazing Executives Forum Nov 4, 2025

NGA GLASS CONFERENCE™ ANN ARBOR

Sept 29-Oct 2, 2025

Ann Arbor Marriott Ypsilanti at Eagle Crest

Registration Open!

glass.org/nga-glass-conference-ann-arbor

BULLI ON GlassBuild Ham E R I C A.

THE GLASS, WINDOW & DOOR EXPO

NOV 4-6, 2025 | ORLANDO, FL ORANGE COUNTY CONVENTION CENTER

QUENCH YOUR THIRST FOR TECHNICAL KNOW-HOW

Natural Outdoor Weathering Testing

Ron Roberts
Q-Lab

Natural Outdoor Weathering Testing

Q-Lab Corporation

Westlake, Ohio Bolton, UK Saarbrücken, Germany Shanghai, China

Q-Lab Test Services

Homestead (Miami), Florida Buckeye (Phoenix), Arizona Saarbrücken, Germany

Weathering Testing

Accelerated tests

- Exposure in test chambers in the laboratory
- Controlled conditions
- Artificially-created light and simulated condensation/rain

Outdoor Tests

- Exposure on outdoor test racks in large fields
- Uncontrolled conditions
- Natural sunlight and real weather conditions

Forces of Weathering

Accelerated

- Light
- Heat
- Condensation
- Humidity
- Spray

Outdoor testing adds other weathering factors

Outdoor

- Sunlight
- Temperature
- Condensation
- Humidity
- Rain
- Biological
- Acid Deposit
- Dirt Pickup

Outdoor Weathering Myths

- Accelerated tests are 100% repeatable
 - All tests (outdoor and accelerated) have variability
- Any degradation is good
 - The wrong degradation mode can be misleading
- It takes 5 years to obtain outdoor test results
 - Outdoor testing can yield useful data in 12 months
- Weathering test data is absolute
 - A single test will not yield a perfect correlation
- Ranked data is weak data
 - Ranked data can be powerful if correctly applied
- Outdoor testing is too expensive...

Why Outdoor Testing Is Often Ignored

- Time pressures force accelerated testing for rapid results
- Many specifications, companies, and product development efforts utilize only accelerated methods believing some of the myths on the previous slide
- Ignoring outdoor testing represents a critical missed opportunity!

Why Outdoor Testing Is Important

Outdoor testing is an important and inexpensive complement to accelerated testing

- Gives confidence that degradation modes are not unintentionally changed
- Test reliability issues or experimental mistakes (human errors) can be identified
- Can give rapid, realistic results
- Establishes a working Correlation Factor

Outdoor Testing Costs

- Cost of Testing
 - Only \$500 \$1,000 per test per year
 - Ongoing tests build a library of highly valuable data, at low cost
- Cost of Not Testing
 - Product recalls? Unhappy customers?
 - Less confidence in results

Global Benchmark Outdoor Exposure Locations

Florida Subtropical

Arizona Desert Sunshine

Q-Lab Outdoor Weathering Sites

Florida

Arizona

Ohio

Q-TRAC

Test sites available in many different climate types

Why Florida?

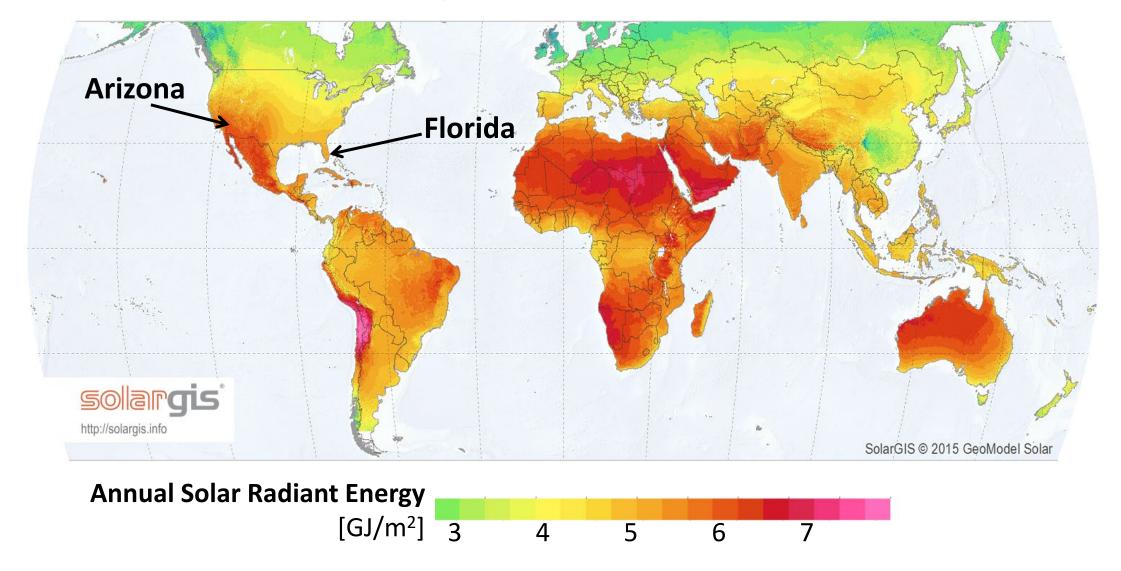
- High UV irradiance
- High temperatures
- High time of wetness (TOW)
- High humidity

Florida Is Accelerated But Not Extreme

- Same noon summer sun spectrum as temperate regions, but present in Florida for more of the year.
- Consistently hot, but max temperatures are not extreme (no 100 °F days)
- Florida's summer is just like summer in temperate regions
- Florida's winter is ... also like summer in temperate regions
- The same weather as the rest of the world, just "more of it"

Why Arizona?

- Higher UV irradiance
- Hot, Hot, Hot!
- High temperature swings thermal cycling
- Low moisture


Florida & Arizona Comparison

Force	Parameter		Florida	Arizona
Sunlight	Annual Solar Energy (MJ/m²)	TUV (295-385 nm)	320	350
		Total	6588	8004
	% sunlight (from sunrise to sunset)		69	85
Heat	Summer avg. Max Temp (°C)		32	40
	Thermal Cycling		Thermal shock from daytime thunderstorms	Large day/night temperature swings
Water	Humidity		High	Low
	Rainfall		High	Low
	Time of Wetness		High	Low

Annual Solar Energy Worldwide

Natural Outdoor Exposure Variations

- Exposure Angle
- Backing
- Under-glass

- Black Box
- Mildew-enhanced
- Salt-accelerated
- Whole product

Exposure Angles

	45° South	90° South	5° South	0°
Graphic	45° s	90° s	5° s	O° s
Orientation	Face	Horizontal		
Materials commonly tested	 Powder/coil coatings Corrosion tests Outdoor plastics Vinyl siding 	Window profilesWood sidingArchitectural coatings	Automotive coatingsRoofing materials	• 3D parts • Roofing •Outdoor flooring
Comment	Most commonly used outdoor exposure	Reduced solar exposure Vertical end-use	Increased wet time	Highest time of wetness

45° South Exposure Angle

90° South Exposure Angle

5° South Exposure Angle

0° Exposure Angle

Backing Techniques

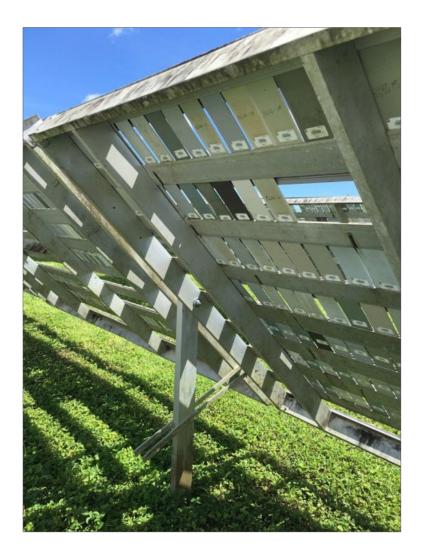
Open-Backed

- Used for rigid specimens
- Painted metal
- Plastic lenses

Mesh-Backed

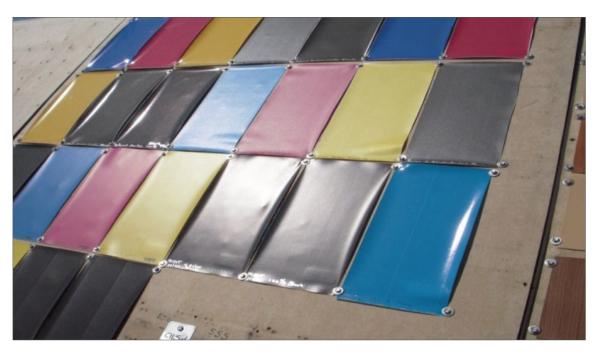
- Flexible specimens
- Typically for 0° exposures

Plywood-Backed


- Vinyl siding
- Roofing

Open-Backed

Mesh-Backed



Plywood-Backed

Under-Glass Exposure

Automotive Interior Testing: Under-Glass Exposures

Automotive Exterior Testing Black Box

Enhanced Testing

Mildew

- 90° or 45° North facing
- Mildew-enhanced area of field
- Longest time of wetness

Salt (SCAB)

- ASTM D6675 / ISO 11474
- 5% Salt Solution
- Synergistic corrosion + weathering

Whole Product

- Entire vehicle, house, etc.
- Best simulation of the end use
- All parts, materials and components interact during the weathering process
- Thermal radiation studies commonly performed

Outdoor Weathering Testing Programs

Best Practices for Outdoor Weathering Testing

Test at benchmark sites

- Harsh environments accelerate degradation
- Data from these sites is internationally accepted and comparable

Start new outdoor tests every year (or more frequently)

- Develop library of data
- Compare old formulations to new; compare to competitors' materials
- Value of test data increases over time like compound interest

Qualify/validate your accelerated lab testing

- Develop better laboratory tests
- Test the lab test against real data

Best Practices for Outdoor Weathering Testing

- Begin testing as soon as possible
- Use a balanced mix of specimens
- Use at least 3 replicates
- Evaluate regularly and often
 - At least 5 intervals per test
- Use control or reference specimens
- Typically 12 to 24 months sufficient for baseline results
- Perform repeat testing and test to failure

Experimental Design for Outdoor Testing

- Every specimen type should be in every test
- Use equal number of specimens in each test
- Use regular exposure periods
 - Except it is OK to schedule more evaluations in early periods (to catch early failures)
- Use the same evaluation techniques throughout

Replicates

- More specimens lead to better data analysis, & adding them is inexpensive
 - There is unlimited "chamber capacity" for outdoor testing
- At least three replicates allows mean and standard deviation calculation
- More specimens give higher confidence that small differences in test results are truly meaningful

Reference Materials

A reference (i.e. control) material is one with known performance

- Always expose one good and one bad "control"
- Use the reference material to compare different tests or different exposures
- The results from the reference materials can be used to "normalize" the results
- This "reference" material is often not a standard polystyrene chip it is your own material

Repeat the Tests

- The first step in writing a standard test is to prove it can be repeated
- Prove the test method is correct by doing the tests again
- Determine and measure the unknown factors that will appear when testing

Test Duration

- Durable materials need to be exposed outdoor for years maybe 1, maybe 10, maybe 50!
 - Paint
 - Signage
 - PV modules
 - Sealants
 - Roofing materials
- Some materials require shorter outdoor exposures:
 - Food and beverages
 - Cosmetics and personal care
 - Optical lenses

Always test to failure!

Summary

Example Test Program

Outdoor

- 1. Florida
- 2. 5° South
- 3. 60 months duration
- 4. Measure at 3 months
- 5. Color, Gloss, Visual
- 6. 300×150 mm panels

Accelerated

- 1. Xenon Arc
- 2. Daylight Filters
- 3. 3,000 hours
- 4. Measure at 250 hrs
- 5. Color, Gloss, Visual
- 6. 75×50 mm panels

Expose reference panels in each test, compare the type & rate of degradation to the reference panel, and ensure the accelerated test is providing the correct results

Putting it All Together

Conclusions

- Accelerated testing is a great way to get fast weathering results
- Outdoor testing complements and verifies accelerated testing
 - It is often overlooked, despite being inexpensive, fast, and easy to implement
 - It helps increase confidence and correlate results to real world experience

QUENCH YOUR THIRST FOR TECHNICAL KNOW-HOW

Thank You for Attending!

Ron Roberts
Q-Lab
rroberts@q-lab.com

NGA Upcoming Webinars

Safe by Design:
Security Glazing and High-Performance
Glass in Educational Facilities
September 11 at 2:00 pm ET